Rethinking Renewable Mandates

Powering the world’s economy with wind, water and solar, and perhaps a little wood sounds like a good idea until a person looks at the details. The economy can use small amounts of wind, water and solar, but adding these types of energy in large quantities is not necessarily beneficial to the system.

While a change to renewables may, in theory, help save world ecosystems, it will also tend to make the electric grid increasingly unstable. To prevent grid failure, electrical systems will need to pay substantial subsidies to fossil fuel and nuclear electricity providers that can offer backup generation when intermittent generation is not available. Modelers have tended to overlook these difficulties. As a result, the models they provide offer an unrealistically favorable view of the benefit (energy payback) of wind and solar.

If the approach of mandating wind, water, and solar were carried far enough, it might have the unfortunate effect of saving the world’s ecosystem by wiping out most of the people living within the ecosystem. It is almost certain that this was not the intended impact when legislators initially passed the mandates.

[1] History suggests that in the past, wind and water never provided a very large percentage of total energy supply.

Figure 1. Annual energy consumption per person (megajoules) in England and Wales 1561-70 to 1850-9 and in Italy 1861-70. Figure by Tony Wrigley, Cambridge University.

Figure 1 shows that before and during the Industrial Revolution, wind and water energy provided 1% to 3% of total energy consumption.

For an energy source to work well, it needs to be able to produce an adequate “return” for the effort that is put into gathering it and putting it to use. Wind and water seemed to produce an adequate return for a few specialized tasks that could be done intermittently and that didn’t require heat energy.

When I visited Holland a few years ago, I saw windmills from the 17th and 18th centuries. These windmills pumped water out of low areas in Holland, when needed. A family would live inside each windmill. The family would regulate the level of pumping desired by adding or removing cloths over the blades of the windmill. To earn much of their income, they would also till a nearby plot of land.

This overall arrangement seems to have provided adequate income for the family. We might conclude, from the inability of wind and water energy to spread farther than 1% -3% of total energy consumption, that the energy return from the windmills was not very high. It was adequate for the arrangement I described, but it didn’t provide enough extra energy to encourage greatly expanded use of the devices.

[2] At the time of the Industrial Revolution, coal worked vastly better for most tasks of the economy than did wind or water.

Economic historian Tony Wrigley, in his book Energy and the English Industrial Revolution, discusses the differences between an organic economy (one whose energy sources are human labor, energy from draft animals such as oxen and horses, and wind and water energy) and an energy-rich economy (one that also has the benefit of coal and perhaps other energy sources). Wrigley notes the following benefits of a coal-based energy-rich economy during the period shown in Figure 1:

  • Deforestation could be reduced. Before coal was added, there was huge demand for wood for heating homes and businesses, cooking food, and for making charcoal, with which metals could be smelted. When coal became available, it was inexpensive enough that it reduced the use of wood, benefiting the environment.
  • The quantity of metals and tools was greatly increased using coal. As long as the source of heat for making metals was charcoal from trees, the total quantity of metals that could be produced was capped at a very low level.
  • Roads to mines were greatly improved, to accommodate coal movement. These better roads benefitted the rest of the economy as well.
  • Farming became a much more productive endeavor. The crop yield from cereal crops, net of the amount fed to draft animals, nearly tripled between 1600 and 1800.
  • The Malthusian limit on population could be avoided. England’s population grew from 4.2 million to 16.7 million between 1600 and 1850. Without the addition of coal to make the economy energy-rich, the population would have been capped by the low food output from the organic economy.

[3] Today’s wind, water, and solar are not part of what Wrigley called the organic economy. Instead, they are utterly dependent on the fossil fuel system.

The name renewables reflects the fact that wind turbines, solar panels, and hydroelectric dams do not burn fossil fuels in their capture of energy from the environment.

Modern hydroelectric dams are constructed with concrete and steel. They are built and repaired using fossil fuels. Wind turbines and solar panels use somewhat different materials, but these too are available only thanks to the use of fossil fuels. If we have difficulty with the fossil fuel system, we will not be able to maintain and repair any of these devices or the electricity transmission system used for distributing the energy that they capture.

[4] With the 7.7 billion people in the world today, adequate energy supplies are an absolute requirement if we do not want population to fall to a very low level. 

There is a myth that the world can get along without fossil fuels. Wrigley writes that in a purely organic economy, the vast majority of roads were deeply rutted dirt roads that could not be traversed by wheeled vehicles. This made overland transport very difficult. Canals were used to provide water transport at that time, but we have virtually no canals available today that would serve the same purpose.

It is true that buildings for homes and businesses can be built with wood, but such buildings tend to burn down frequently. Buildings of stone or brick can also be used. But with only the use of human and animal labor, and having few roads that would accommodate wheeled carts, brick or stone homes tend to be very labor-intensive. So, except for the very wealthy, most homes will be made of wood or of other locally available materials such as sod.

Wrigley’s analysis shows that before coal was added to the economy, human labor productivity was very low. If, today, we were to try to operate the world economy using only human labor, draft animals, and wind and water energy, we likely could not grow food for very many people. World population in 1650 was only about 550 million, or about 7% of today’s population. It would not be possible to provide for the basic needs of today’s population with an organic economy as described by Wrigley.

(Note that organic here has a different meaning than in “organic agriculture.” Today’s organic agriculture is also powered by fossil fuel energy. Organic agriculture brings soil amendments by truck, irrigates land and makes “organic sprays” for fruit, all using fossil fuels.)

[5] Wind, water and solar only provided about 11% of the world’s total energy consumption for the year 2018. Trying to ramp up the 11% production to come anywhere close to 100% of total energy consumption seems like an impossible task.

Figure 2. World Energy Consumption by Fuel, based on data of 2019 BP Statistical Review of World Energy.

Let’s look at what it would take to ramp up the current renewables percentage from 11% to 100%. The average growth rate over the past five years of the combined group that might be considered renewable (Hydro + Biomass etc + Wind&Solar) has been 5.8%. Maintaining such a high growth rate in the future is likely to be difficult because new locations for hydroelectric dams are hard to find and because biomass supply is limited. Let’s suppose that despite these difficulties, this 5.8% growth rate can be maintained going forward.

To increase the quantity from 2018’s low level of renewable supply to the 2018 total energy supply at a 5.8% growth rate would take 39 years. If population grows between 2018 and 2057, even more energy supply would likely be required. Based on this analysis, increasing the use of renewables from a 11% base to close to a 100% level does not look like an approach that has any reasonable chance of fixing our energy problems in a timeframe shorter than “generations.”

The situation is not quite as bad if we look at the task of producing an amount of electricity equal to the world’s current total electricity generation with renewables (Hydro + Biomass etc + Wind&Solar); renewables in this case provided 26% of the world’s electricity supply in 2018.

Figure 3. World electricity production by type, based on data from 2019 BP Statistical Review of World Energy.

The catch with replacing electricity (Figure 3) but not energy supplies is the fact that electricity is only a portion of the world’s energy supply. Different calculations give different percentages, with electricity varying between 19% and 43% of total energy consumption.1 Either way, substituting wind, water and solar in electricity production alone does not seem to be sufficient to make the desired reduction in carbon emissions.

[6] A major drawback of wind and solar energy is its variability from hour-to-hour, day-to-day, and season-to-season. Water energy has season-to-season variability as well, with spring or wet seasons providing the most electricity.

Back when modelers first looked at the variability of electricity produced by wind, solar and water, they hoped that as an increasing quantity of these electricity sources were added, the variability would tend to offset. This happens a little, but not nearly as much as one would like. Instead, the variability becomes an increasing problem as more is added to the electric grid.

When an area first adds a small percentage of wind and/or solar electricity to the electric grid (perhaps 10%), the electrical system’s usual operating reserves are able to handle the variability. These were put in place to handle small fluctuations in supply or demand, such as a major coal plant needing to be taken off line for repairs, or a major industrial client reducing its demand.

But once the quantity of wind and/or solar increases materially, different strategies are needed. At times, production of wind and/or solar may need to be curtailed, to prevent overburdening the electric grid. Batteries are likely to be needed to help ease the abrupt transition that occurs when the sun goes down at the end of the day while electricity demand is still high. These same batteries can also help ease abrupt transitions in wind supply during wind storms.

Apart from brief intermittencies, there is an even more serious problem with seasonal fluctuations in supply that do not match up with seasonal fluctuations in demand. For example, in winter, electricity from solar panels is likely to be low. This may not be a problem in a warm country, but if a country is cold and using electricity for heat, it could be a major issue.

The only real way of handling seasonal intermittencies is by having fossil fuel or nuclear plants available for backup. (Battery backup does not seem to be feasible for such huge quantities for such long periods.) These back-up plants cannot sit idle all year to provide these services. They need trained staff who are willing and able to work all year. Unfortunately, the pricing system does not provide enough funds to adequately compensate these backup systems for those times when their services are not specifically required by the grid. Somehow, they need to be paid for the service of standing by, to offset the inevitable seasonal variability of wind, solar and water.

[7] The pricing system for electricity tends to produce rates that are too low for those electricity providers offering backup services to the electric grid.

As a little background, the economy is a self-organizing system that operates through the laws of physics. Under normal conditions (without mandates or subsidies) it sends signals through prices and profitability regarding which types of energy supply will “work” in the economy and which kinds will simply produce too much distortion or create problems for the system.

If legislators mandate that intermittent wind and solar will be allowed to “go first,” this mandate is by itself a substantial subsidy. Allowing wind and solar to go first tends to send prices too low for other producers because it tends to reduce prices below what those producers with high fixed costs require.2

If energy officials decide to add wind and solar to the electric grid when the grid does not really need these supplies, this action will also tend to push other suppliers off the grid through low rates. Nuclear power plants, which have already been built and are adding zero CO2 to the atmosphere, are particularly at risk because of the low rates. The Ohio legislature recently passed a $1.1 billion bailout for two nuclear power plants because of this issue.

If a mandate produces a market distortion, it is quite possible (in fact, likely) that the distortion will get worse and worse, as more wind and solar is added to the grid. With more mandated (inefficient) electricity, customers will find themselves needing to subsidize essentially all electricity providers if they want to continue to have electricity.

The physics-based economic system without mandates and subsidies provides incentives to efficient electricity providers and disincentives to inefficient electricity suppliers. But once legislators start tinkering with the system, they are likely to find a system dominated by very inefficient production. As the costs of handling intermittency explode and the pricing system gets increasingly distorted, customers are likely to become more and more unhappy.

[8] Modelers of how the system might work did not understand how a system with significant wind and solar would work. Instead, they modeled the most benign initial situation, in which the operating reserves would handle variability, and curtailment of supply would not be an issue. 

Various modelers attempted to figure out whether the return from wind and solar would be adequate, to justify all of the costs of supporting it. Their models were very simple: Energy Out compared to Energy In, over the lifetime of a device. Or, they would calculate Energy Payback Periods. But the situation they modeled did not correspond well to the real world. They tended to model a situation that was close to the best possible situation, one in which variability, batteries and backup electricity providers were not considerations. Thus, these models tended to give a far too optimistic estimates of the expected benefit of intermittent wind and solar devices.

Furthermore, another type of model, the Levelized Cost of Electricity model, also provides distorted results because it does not consider the subsidies needed for backup providers if the system is to work. The modelers likely also leave out the need for backup batteries.

In the engineering world, I am told that computer models of expected costs and income are not considered to be nearly enough. Real-world tests of proposed new designs are first tested on a small scale and then at progressively larger scales, to see whether they will work in practice. The idea of pushing “renewables” sounded so good that no one thought about the idea of testing the plan before it was put into practice.

Unfortunately, the real-world tests that Germany and other countries have tried have shown that intermittent renewables are a very expensive way to produce electricity when all costs are considered. Neighboring countries become unhappy when excess electricity is simply dumped on the grid. Total CO2 emissions don’t necessarily go down either.

[9] Long distance transmission lines are part of the problem, not part of the solution. 

Early models suggested that long-distance transmission lines might be used to smooth out variability, but this has not worked well in practice. This happens partly because wind conditions tend to be similar over wide areas, and partly because a broad East-West mixture is needed to even-out the rapid ramp-down problem in the evening, when families are still cooking dinner and the sun goes down.

Also, long distance transmission lines tend to take many years to permit and install, partly because many landowners do not want them crossing their property. In some cases, the lines need to be buried underground. Reports indicate that an underground 230 kV line costs 10 to 15 times what a comparable overhead line costs. The life expectancy of underground cables seems to be shorter, as well.

Once long-distance transmission lines are in place, maintenance is very fossil fuel dependent. If storms are in the area, repairs are often needed. If roads are not available in the area, helicopters may need to be used to help make the repairs.

An issue that most people are not aware of is the fact that above ground long-distance transmission lines often cause fires, especially when they pass through hot, dry areas. The Northern California utility PG&E filed for bankruptcy because of fires caused by its transmission lines. Furthermore, at least one of Venezuela’s major outages seems to have been related to sparks from transmission lines from its largest hydroelectric plant causing fires. These fire costs should also be part of any analysis of whether a transition to renewables makes sense, in terms of either cost or energy returns.

[10] If wind turbines and solar panels are truly providing a major net benefit to the economy, they should not need subsidies, even the subsidy of going first.

To make wind and solar electricity producers able to compete with other electricity providers without the subsidy of going first, these providers need a substantial amount of battery backup. For example, wind turbines and solar panels might be required to provide enough backup batteries (perhaps 8 to 12 hours’ worth) so that they can compete with other grid members, without the subsidy of going first. If it really makes sense to use such intermittent energy, these providers should be able to still make a profit even with battery usage. They should also be able to pay taxes on the income they receive, to pay for the government services that they are receiving and hopefully pay some extra taxes to help out the rest of the system.

In Item [2] above, I mentioned that when coal mines were added in England, roads to the mines were substantially improved, befitting the economy as a whole. A true source of energy (one whose investment cost is not too high relative to its output) is supposed to be generating “surplus energy” that assists the economy as a whole. We can observe an impact of this type in the improved roads that benefited England’s economy as a whole. Any so-called energy provider that cannot even pay its own fair share of taxes acts more like a leech, sucking energy and resources from others, than a provider of surplus energy to the rest of the economy.


In my opinion, it is time to eliminate renewable energy mandates. There will be some instances where renewable energy will make sense, but this will be obvious to everyone involved. For example, an island with its electricity generation from oil may want to use some wind or solar generation to try to reduce its total costs. This cost saving occurs because of the high price of oil as fuel to make electricity.

Regulators, in locations where substantial wind and/or solar has already been installed, need to be aware of the likely need to provide subsidies to backup providers, in order to keep the electrical system operating. Otherwise, the grid will likely fail from lack of adequate backup electricity supply.

Intermittent electricity, because of its tendency to drive other providers to bankruptcy, will tend to make the grid fail more quickly than it would otherwise. The big danger ahead seems to be bankruptcy of electricity providers and of fossil fuel producers, rather than running out of a fuel such as oil or natural gas. For this reason, I see little reason for the belief by many that electricity will “last longer” than oil. It is a question of which group is most affected by bankruptcies first.

I do not see any real reason to use subsidies to encourage the use of electric cars. The problem we have today with oil prices is that they are too low for oil producers. If we want to keep oil production from collapsing, we need to keep oil demand up. We do this by encouraging the production of cars that are as inexpensive as possible. Generally, this will mean producing cars that operate using petroleum products.

(I recognize that my view is the opposite one from what many Peak Oilers have. But I see the limit ahead as being one of too low prices for producers, rather than too high prices for consumers. The CO2 issue tends to disappear as parts of the system collapse.)


[1] BP bases its count on the equivalent fossil fuel energy needed to create the electricity; IEA counts the heat energy of the resulting electrical output. Using BP’s way of counting electricity, electricity worldwide amounts to 43% of total energy consumption. Using the International Energy Agency’s approach to counting electricity, electricity worldwide amounts to only about 19% of world energy consumption.

[2] In some locations, “utility pricing” is used. In these cases, pricing is set in a way needed to provide a fair return to all providers. With utility pricing, intermittent renewables would not be expected to cause low prices for backup producers.

This entry was posted in Energy policy and tagged , , , , by Gail Tverberg. Bookmark the permalink.

About Gail Tverberg

My name is Gail Tverberg. I am an actuary interested in finite world issues - oil depletion, natural gas depletion, water shortages, and climate change. Oil limits look very different from what most expect, with high prices leading to recession, and low prices leading to financial problems for oil producers and for oil exporting countries. We are really dealing with a physics problem that affects many parts of the economy at once, including wages and the financial system. I try to look at the overall problem.

1,461 thoughts on “Rethinking Renewable Mandates

    • Wow! A 9.1% increase in food prices should reduce demand for other goods. Or people will eat more rise and less pork (and whatever else is spiking in price).

      • It really isn’t. We don’t need demand to be falling for problems to ensue, although actually there have been some yoy falls in global demand on a monthly basis:

        “The Paris-based agency said that compared with the same month in 2018, global demand fell by 160,000 barrels per day (bpd) in May – the second year-on-year fall of 2019.”

        Given the tight correlation demonstrated by Gail between energy consumption and economic growth (see below) and given that the global economy needs to be growing at around 3% p/a (and, until they changed their criteria, was defined by the IMF as being in recession if it fell below this mark), oil demand growth at around 1% “with a greater likelihood of a downward revision than an upward one” is a concern.

        Moreover, it is almost solely China that is pulling demand growth forwards and China’s situation is precarious. Oil demand growth across the OECD countries has actually fallen for three consecutive quarters. This is also cause for concern.

      • A very pretty Hawaiian Congresswomen who’s running for President. She is in opposition to the Deep State and it’s forever wars.

        • She did a fine job the other day in showing up the hypocrisy of the redoubtable Senator Kamala Harris, which has endeared her to many people.

          • Indeed, CNN was none to pleased with that. Harris was their candidate of choice until Tulsi ruined the party for the both of them.

      • The problem for Tulsi or any other sincere candidate is that their ratio against the legacy system insiders at various levels of gov is like 1:1 000 000, optimistically speaking.
        For one Tulsi you get millions of former, present and future mil/gov rotating contractors who live beyond their means (and want to keep the system running), and it gets worse as out of them say 1/10th is directly involved in mass killings (incl. domestically), and large scale embezzlement of gov funds etc. So, those are directly threatened by capital punishment. Therefore it usually ends up in tears JFK/RFK or derailment (Eisenhower/Carter)..

        You can’t reform a hydra..

  1. Excellent article with solid research – which seems to be rare! Thank you for thinking through this issue and posting your findings!

  2. Wind, solar thermal, hydro, wood burning are all great substitutes for FF in a world that has 50 million humans. A world that uses sail, walking, and ox for transport. A world without jet planes. A world that uses little metal.

    We keep asking the wrong question what is the substitute for FF with 8 billion humans? That question has no solution.

      • there are many countries in the world… we could wonder why not even one has started building a power satellite system… but anyway…

        if power satellites ARE the solution for the world’s energy needs, then what could be the next questions?

        will that abundant energy allow the population to rise above 10 billion?

        what will 10 billion people do to resources when they have more energy supplies?

        when will the overuse of arable land cause food production to drop?

        when will fresh water supplies become inadequate in the insanely overpopulated major cities?

        when will mining become basically useless when the remaining ores contain close to zero percent of any metal or mineral?

        when will the food wars and water wars begin?

        so many questions, and so few answers…

        • “there are many countries in the world… we could wonder why not even one has started building a power satellite system… but anyway…”

          You need two conditions for power satellites. One is transporting cargo to LEO for $100/kg. That’s in sight, and at least two companies can provide it. The other is a way to avoid space junk. That’s tentative, not been reviewed and only a few months old

          “if power satellites ARE the solution for the world’s energy needs, then what could be the next questions?

          will that abundant energy allow the population to rise above 10 billion?”

          Perhaps. It might fall if it makes people wealthier.

          ” what will 10 billion people do to resources when they have more energy supplies?”

          Less than they do now. Energy production wastes a lot of the landscape.

          ” when will the overuse of arable land cause food production to drop?”

          There is no reason for food production to drop with a lot more energy available.

          ” when will freshwater supplies become inadequate in the insanely overpopulated major cities?”

          If you have lots of energy, then desalinating water is a snap. I once worked out how much water you could produce with the 5 GW output of one of them. It was a lot. equal to ~4 times the average flow of the Colorado River.

          It’s a published paper in a 2010 book put out by American Inst. of Physics. If you want a copy and that book is not in a handy library, I can send you a copy.

            • “$2500/kg to orbit”

              It is, or higher. But they orbital companies think they can get it down to $100/kg to LEO. If they can’t, then power satellites will not work economically.

              I am hard-nosed about the physics and economics. Also the ozone damage from a lot of rocket or space plane traffic, and the space junk problem which was (probably) solved a few months ago.

            • “One is transporting cargo to LEO for $100/kg. That’s in sight, and at least two companies can provide it.”

              I would say down to $100 from $2500 or $5000 is quite a long way.

            • “down to $100”

              I agree. But if you look into the economics of highly reusable rockets, they think they can launch 100 tons for ten million dollars. Gets down to where the LNG fuel is a significant cost. Humans may never deploy power satellites, but the engineering and the economics like favorable if people want a long term energy solution.

            • “I thought current price was $2500/kg to orbit?”

              Well SpaceShipTwo will take you up for $250k, which seems about right for 100kg of human and accessories.

              Of course, you don’t get anywhere near orbit. The hype says you escape Earth’s gravity and atmosphere, but of course you don’t: the maximum height of 140,000 ft doesn’t even get you into the ionosphere.

              It also doesn’t work. The other day I watched a documentary about the destruction of the first manned prototype in 2014. At that time, the project was five years behind schedule; it is now eight years behind schedule. And even if it works, it is useless, except as a way of separating rich fools from their money.

              Space flight from the bottom of a gravity well is, and always has been, an absurdity. Unless we can invent Cavorite. And, by the way, the design of the Virgin Galactic system is desperately stupid. The “space ship” is lifted to 40,000 ft by a purpose built jet aeroplane. It could have been lifted to 20,000 ft by an airship as 1/100th the cost, and then an external solid fuel rocket could have taken it the rest of the way at 1/20th the cost.
              But hey, since a rich fool is funding the project, who cares?

            • If the only thing stopping solar satellites is cost to GTO being 25-50x to expensive, I think someone should still have built one just to experiment, more fruitful than another moon expedition.

      • The reindeer of St Michaels’ Island experienced the solution, though I think Nature found it for them. As did the humans on Easter Island. And as shall we.

        Naturam expellas furca: tamen usque recurret.

        • “Easter Island”

          They lacked resources. I have thought a lot about that case, and I don’t know what they could have done to avoid the problems they had even with modern knowledge.

          • Thank you, hkeith. I also have thought a lot about Easter Island, since I lived on an equatorial island for over 20 years. What went wrong, and was it inevitable?

            The big driver of change was the fact that they cut down all their trees. This deprived them of soil cover, so reducing land productivity, but also of timber with which to make canoes, so destroying their fishing industry. They then ate land birds until they were extinct, then moved on (or down) to chickens, rats, and finally each other.

            But why did they cut down their trees? To move huge stone statues. And why, …? To enhance the prestige of their chiefs, who vied with each other in erecting ever larger, more expensive, and more useless monuments.

            Does that sound familiar? We also are destroying our environment to feed the greed of our “chiefs”, the globalist oligarchs who, covertly or overtly, control most of the world.

            The Easter Islanders should have preserved their trees and chopped down their chiefs. And perhaps, so should we.

            • “The big driver of change”

              Was the fact that their population grew from around 20 to around 20,000.

              It is not entirely clear what did in the trees. Some of the people who have investigated think the rats may have eaten all the seeds and that killed the trees. It’s also not clear that the statues were moved on rollers. The locals will tell you that they were “walked” like moving a refrigerator.

              “erecting ever larger, more expensive, and more useless monuments.”

              I have no good thoughts about where such practices originated, but they are common when humans have the extra energy to build them. Pyramids, Stonehenge, Maya, etc. It seems to be wired into humans along with inventing agriculture (at least twice).

    • Actually, if you dig into the historical record wind and water mills were periodically very dubious investment, somehow people now tend to remember only the “lucky” series of clam years without floods/river ice, wind-giant hail storms, pillaging/burning armies..

      In the same vein, lets rearrange the question into as to whether the world of ~8B is here to stay or not, which could be the question of the first order. Followed by what is my interaction with situation/scenario this number is going abruptly up/down..

  3. Lot of nations battling political chaos, as declining prosperity and growing wealth disparity push right and left further apart with a kind of splintering in between:

    “Italy’s Deputy Prime Minister Matteo Salvini is looking to snatch the country’s top political spot after the crumbling of the populist coalition between his League party and anti-establishment 5-star party. Salvini hopes the no-confidence motion filed against the government today will trigger a snap election and install him as the nation’s new leader.”

    • “Spain’s acting prime minister Pedro Sanchez said on Friday he would meet next month with far-left Unidas Podemos and regional parties including Catalan separatists, in a bid to strike a deal on forming a government and avoiding snap elections.

      “Last month Sanchez, whose Socialist Party finished first in an inconclusive national election in April, twice failed to garner a parliamentary majority in support of his administration after talks to form a coalition government with Podemos collapsed.”

      • “Preparing for the possibility of a no-deal Brexit should be “the top priority” for civil servants, Boris Johnson has told them in a letter. The PM said he would prefer to get a deal but the UK must leave the EU by 31 October “whatever the circumstances”.

        “Earlier Jeremy Corbyn had urged the UK’s top civil servant to intervene to prevent a no-deal Brexit happening during a general election campaign.

        “It comes amid speculation MPs could back a no-confidence motion in the PM.”

        • “Earlier Jeremy Corbyn had urged the UK’s top civil servant to intervene to prevent a no-deal Brexit happening during a general election campaign.”

          Civil servants have a constitutional duty to support the government in power and to implement its policies in good faith.

          Jeremy Corbyn is therefore suborning treason. Hang him, by the neck, until dead, and good riddance.

    • UK blackouts. Guardian comment:

      Thomas Edward, a consultant at the energy specialist Cornwall Insight, says Little Barford tripped offline at 4.50pm and may have triggered the automatic shutdown of the windfarm.

      The key thing about today is that it is very windy. The strength of the system is determined by how many power plants you have running all at once. If there are a lot of power plants running and one has an outage, then the others can pick up the slack.

      Windfarms don’t have the same level of stability as a power plant. So, on a windy day when we rely more on wind power thermal power plants, it is more difficult to manage. We need to know exactly what happened from National Grid and the network operators to understand the full cause of the blackout.

      • Mediaeval windmills could cope with high winds because the sails would automatically “feather”, ie turn partly away from the wind and so reduce its perceived force.

        Modern windmills cannot do that. Some of them, but not all, can be manually feathered, but it is a all or nothing proposition, so once feathered they stop working. The more usual protection is an automatic shutdown, which again can come too late to prevent damage since it is usually programmed to activate only in a prolonged high wind.

        But either way the windmill is now offline. In theory, the rest of the wind farm then picks up the slack, but of course if one windmill shuts down the others in the farm are also near their limit, so it often happens that the whole farm goes offline, and that dumps the problem on the rest of the grid, This of course at times of high demand can cause a failure cascade.

        To quote me, from a lecture on systems reliability “complexity is the enemy of reliability”.
        And, as so often, our modern technology embraces complexity in the false belief our ingenuity can trump the laws of physics. And Hubris is almost always followed by Nemesis.

    • ah, UK citizens now undergoing the Fast Eddy Challenge…

      I suppose that the OFW regulars there can’t post yet about the chaos…

      no electricity puts a damper on posting volume…


      when it’s restored, let’s hope for some good reporting from inside the UK…

      • The spread of the UK power cut offers a good lesson in inter-connectedness, as well as grid vulnerability. Here’s betting the reporting will be atrocious and uninformed……

  4. This was linked from Drudge today, thought you guys would appreciate it:

    “Does China believe that we are on the verge of a major global crisis? The communist Chinese government has always been very big into planning, and it appears that they have decided that now is the time to hoard food, gold and other commodities. Of course in recent days the fact that China is completely cutting off U.S. agricultural imports has made headlines all over the globe, but at the same time China is dramatically increasing the amount of food that it is importing from the rest of the world. The end result is actually a substantial surge in Chinese imports, and this is starting to show up in the official numbers. ”

    • Seems more likely China is shafting US farmers in response to Trump’s latest threats of more tariffs. They are purposely targeting segments of the population that voted for Trump in the last election, like rural farmers.

      As an aside I don’t think Trump can be beaten in the upcoming election. Not because he may get out voted, but my opinion is the last election was won via hacking election results in swing states a few percent enough to win those states and the election. Even if exit polls show a 5-10% victory for the Dem, Trump will win.

      • Yeah the Russia thing is a diversion. The hacking started on Wall Street. They probably got some contract tech help from Russia but the plan was all good ole USA .
        We got 3-D news now. Deception, Diversion, Division. We don’t need better politicians. We need better writers. And casting needs some serious rework. Trumps isn’t a bit funny.
        Come On. We could have George Carlin for president. Someone said he’s dead. Not a problem. They can Photoshop him right in there. Trump ain’t funny!!!

        • “Trump ain’t funny!!!”

          No kidding, the 3D’s have become a propaganda art-form. It’s amazing how easily people are manipulated.

          Recently a mock up of a Florida election center was created for young kids to try and hack in to try and change the election results. An 11 year old boy within 10 minutes hacked in and changed the election results. But what happens as a result to try and change the system? Nothing.

          In the last prez election when some people wanted a recount in certain swing states, that was not allowed by R governors, which means we have no democracy. A democracy can only exit if the election process can be verified to be an accurate count of the votes.

          • In Japan every registered voter gets a postcard, they bring this to the polling station. If they lose their postcard, they can present a valid ID. With this, they are checked against the voter role. If they are on the list, they are given a pencil and a ballot paper on which is printed the title of the election and the names of the candidates. In order to vote, they are asked to write the name of the candidate they are voting for in the space provided on the ballot paper and then to post it in the ballot box provided. It’s all very low tech, but it works even if there’s a power cut.

      • When the EU sanctioned Russia, one of the big food businesses there (owned by the family of a friend) simply substituted EU products with those from Brazil, Asia etc.

        They made greater profits as the replacements were cheaper. Chinese are no doubt doing likewise, and non-US supplies may be more reliable in the longer term.

        • It is hard to know how this will turn out. This is a chart of the dollar value of US food, feed, and beverage exports.

          The dollar value of US food exports is already down since 2014, perhaps partly because oil and other prices are down. They also fell during the Great Recession, but this too may have been more of a price than quantity impact.

          This year, with production of grain crops likely lower in the Midwest due to wet weather, the total volume that the US has available to sell is likely to be lower. Moving grain imports away from the US may not be a bad idea, for now, because of this issue.

    • China certainly knows that the country is facing problems and the world is facing problems.

      Its coal situation is very troubling.

      China did a great job of working around this issue in 2018, but this will be increasingly difficult in years ahead, I expect.

Comments are closed.