Why EIA, IEA, and Randers’ 2052 Energy Forecasts are Wrong

What is the correct way to model the future course of energy and the economy? There are clearly huge amounts of oil, coal, and natural gas in the ground.  With different approaches, researchers can obtain vastly different indications. I will show that the real issue is most researchers are modeling the wrong limit.

Most researchers assume that the limit that they should be concerned with is the amount of oil, coal, and natural gas in the ground. This is the wrong limit. While in theory we will eventually hit this limit, because of the way fossil fuels are integrated into the rest of the economy, we hit financial limits much earlier. These financial limits include lack of investment capital, inability of governments to collect enough taxes to fund their programs, and widespread debt defaults.

One of the things I show in this post is that Economic Growth is a positive feedback loop that is enabled by cheap energy sources. (Economists have postulated that Economic Growth is permanent, and has no connection to energy sources.) Economic Growth turns to economic contraction as the cost of energy extraction (broadly defined) rises. It is the change in this feedback loop that leads to the financial problems mentioned above.  These effects tend to lead to collapse over a period of years (perhaps 10 or 20, we really don’t know), rather than a slow decline which is easily mitigated.

If, indeed, most analysts are concerned about the wrong limit, this has huge implications for energy policy:

1. Climate change models include way too much CO2 from fossil fuels. Lack of investment capital will bring down production of all fossil fuels in only a few years. The amounts of fossil fuels included in climate change models are based on “Demand Model” and “Hubbert Peak Model” estimates of fossil fuel consumption (described in this post), both of which tend to be far too high. This is not to say that the climate isn’t changing, and won’t continue to change. It is just that excessive fossil fuel consumption needs to move much farther down our list of problems contributing to future climate change.

2. It becomes much less clear whether high-priced replacements for fossil fuels are worthwhile. In theory, they might allow a particular economy to have electricity for a while longer after collapse, if the whole system can be kept properly repaired. Offsetting this potential benefit are several drawbacks:  (a) they make the economy with the high-priced replacements less competitive in the world marketplace, (b) they tend to run up debt, increase government spending, and decrease discretionary income of citizens, all limits we are reaching, and (c) they tend to push the economic cycle more quickly toward contraction for the country purchasing the high-priced renewables.

3. A large share of academic writing is premised on a wrong understanding of the real limits we are reaching. Since writers base their analyses on the wrong analyses of previous writers, this leads to a nearly endless supply of misleading or wrong academic papers.

This post is related to a recent post I wrote, The Real Oil Extraction Limit, and How It Affects the Downslope.

Continue reading

Why I Don’t Believe Randers’ Limits to Growth Forecast to 2052

Jorgen Randers published a book in 2012 called 2052: A Global Forecast for the Next 40 Years. A note on the front says, “A report to the Club of Rome, Commemorating the 40th Anniversary of The Limits to Growth.”

If we compare the new book to the book from 40 years ago, we see some surprising differences. In 1972, the analysis suggested that serious resource depletion issues would occur about now–the first part of the 21st century. In comparison, current indications look much better. According to Randers’ current analysis, world GDP growth will continue to rise through 2050, and energy consumption will continue to grow until 2040. While a decline in oil supply will take place, it will not occur until 2025. When it does happen, it will occur sufficiently slowly and incrementally that other fuels can replace its loss, apparently without disruption. Renewables will ramp up far more rapidly in the future than to date.

Figure 1. Comparison of oil and renewables forecast in 2052, based on spreadsheet from www.2052.info.

Figure 1. Comparison of oil and renewables forecast in 2052, based on spreadsheet from http://www.2052.info.

A person reading the front cover of 2052 might think that the model is quite close to the model used in the original The Limits to Growth analysis. My review indicates that the current model is fairly different. The book talks very little about the workings of the model, so doesn’t let us know what changes have been made.

It is possible to do some detective work regarding how the current model is constructed. Dolores “Doly” Garcia, who worked on the model, wrote three posts published on TheOilDrum.com explaining the model.  There is also a website (www.2052.info) provided by Randers giving the numerical output of the model in spreadsheet form.  Together, these point to a methodology which assumes that if world oil supply declines, the decline will be slow and will be quickly offset by a rise in the use of renewables, coal, and natural gas. Changes in the model, which I will describe further in another section, are the first reason I don’t believe Randers’ Limits to Growth forecast.

A second reason why I don’t believe Randers’ forecast has to do with limitations of the original forecast. These limitations did not make much difference back in 1972, when researchers were trying to estimate approximate impacts 40 or 50 years later, but they do now, when resources are becoming more depleted. One issue omitted from the model is a price mechanism. A related issue is that there is no true calculation of demand, based on what consumers can afford. The model also omits debt, and the role debt plays, both for investment purposes and in order for consumers to afford products made with oil and other energy products. Research regarding past collapses indicates they were financial in nature–the model should not overlook this important issue. Continue reading