Today’s Energy Predicament – A Look at Some Charts

Today’s energy predicament is a strange situation that most modelers have never really considered. Let me explain some of the issues I see, using some charts.

[1] It is probably not possible to reduce current energy consumption by 80% or more without dramatically reducing population.

A glance at energy consumption per capita for a few countries suggests that cold countries tend to use a lot more energy per person than warm, wet countries.

Figure 1. Energy consumption per capita in 2019 in selected countries based on data from BP’s 2020 Statistical Review of World Energy.

This shouldn’t be a big surprise: Our predecessors in Africa didn’t need much energy. But as humans moved to colder areas, they needed extra warmth, and this required extra energy. The extra energy today is used to build sturdier homes and vehicles, to heat and operate those homes and vehicles, and to build the factories, roads and other structures needed to keep the whole operation going.

Saudi Arabia (not shown on Figure 1) is an example of a hot, dry country that uses a lot of energy. Its energy consumption per capita in 2019 (322 GJ per capita) was very close to that of Norway. It needs to keep its population cool, besides running its large oil operation.

If the entire world population could adopt the lifestyle of Bangladesh or India, we could indeed get our energy consumption down to a very low level. But this is difficult to do when the climate doesn’t cooperate. This means that if energy usage needs to fall dramatically, population will probably need to fall in areas where heating or air conditioning are essential for living. Continue reading

The World’s Fragile Economic Condition – Part 1

Where is the world economy heading? In my opinion, a large portion of the story that we usually hear about how the world economy operates and the role energy plays is not really correct. In this post (to be continued in Part 2 in the near future), I explain how some of the major elements of the world economy seem to function. I also point out some relationships that tend to make the world’s economic condition more fragile.

Trying to explain the situation a bit further, the economy is a networked system. It doesn’t behave the way nearly everyone expects it to behave. Many people believe that any energy problem will be signaled by high prices. A look at history shows that this is not really the case: fighting and conflict are also likely outcomes. In fact, rising tariffs are a sign of energy problems.

The underlying energy problem represents a conflict between supply and demand, but not in the way most people expect. The world needs rising demand to support the rising cost of energy products, but this rising demand is, in fact, very difficult to produce. The way that this rising demand is normally produced is by adding increasing amounts of debt, at ever-lower interest rates. At some point, the debt bubble created to provide the necessary demand becomes overstretched. Now, we seem to be reaching a situation where the debt bubble may pop, at least in some parts of the world. This is a very concerning situation.

Context. The presentation discussed in this post was given to the Casualty Actuaries of the Southeast. (I am a casualty actuary myself, living in the Southeast.) The attendees tended to be quite young, and they tended not to be very aware of energy issues. I was trying to “bring them up to speed.” This is a link to the presentation: The World’s Fragile Economic Condition.

Slide 1

Slide 2

This post covers only Items 1, 2, and 3 from the Outline in Slide 2. I will save Items 3 through 6 for a post called “The World’s Fragile Economic Condition-Part 2.”

Continue reading

The Approaching US Energy-Economic Crisis

I was recently asked to give a talk called, “The Approaching US Energy-Economic Crisis.” In other words, how might the United States encounter problems that lead to a crisis? As we will see, many of the problems that could lead to a crisis (such as increased wage disparity and difficulty in collecting enough taxes) are issues that we are already beginning to encounter.

In this talk, I first discuss the connection between energy and the economy. Without this connection, it doesn’t make sense to talk about a crisis arising with respect to energy and the economy. I then discuss seven issues that could lead to a US energy-economic crisis.

Continue reading

Oops! Low oil prices are related to a debt bubble

Why is the price of oil so low now? In fact, why are all commodity prices so low? I see the problem as being an affordability issue that has been hidden by a growing debt bubble. As this debt bubble has expanded, it has kept the sales prices of commodities up with the cost of extraction (Figure 1), even though wages have not been rising as fast as commodity prices since about the year 2000. Now many countries are cutting back on the rate of debt growth because debt/GDP ratios are becoming unreasonably high, and because the productivity of additional debt is falling.

If wages are stagnating, and debt is not growing very rapidly, the price of commodities tends to fall back to what is affordable by consumers. This is the problem we are experiencing now (Figure 1). 

Figure 1. Author's illustration of problem we are now encountering.

Figure 1. Author’s illustration of problem we are now encountering.

I will explain the situation more fully in the form of a presentation. It can be downloaded in PDF form: Oops! The world economy depends on an energy-related debt bubble. Let’s start with the first slide, after the title slide. Continue reading

Why Standard Economic Models Don’t Work–Our Economy is a Network

The story of energy and the economy seems to be an obvious common sense one: some sources of energy are becoming scarce or overly polluting, so we need to develop new ones. The new ones may be more expensive, but the world will adapt. Prices will rise and people will learn to do more with less. Everything will work out in the end. It is only a matter of time and a little faith. In fact, the Financial Times published an article recently called “Looking Past the Death of Peak Oil” that pretty much followed this line of reasoning.

Energy Common Sense Doesn’t Work Because the World is Finite 

The main reason such common sense doesn’t work is because in a finite world, every action we take has many direct and indirect effects. This chain of effects produces connectedness that makes the economy operate as a network. This network behaves differently than most of us would expect. This networked behavior is not reflected in current economic models.

Most people believe that the amount of oil in the ground is the limiting factor for oil extraction. In a finite world, this isn’t true. In a finite world, the limiting factor is feedback loops that lead to inadequate wages, inadequate debt growth, inadequate tax revenue, and ultimately inadequate funds for investment in oil extraction. The behavior of networks may lead to economic collapses of oil exporters, and even to a collapse of the overall economic system.

An issue that is often overlooked in the standard view of oil limits is diminishing returns. With diminishing returns, the cost of extraction eventually rises because the easy-to-obtain resources are extracted first. For a time, the rising cost of extraction can be hidden by advances in technology and increased mechanization, but at some point, the inflation-adjusted cost of oil production starts to rise.

With diminishing returns, the economy is, in effect, becoming less and less efficient, instead of becoming more and more efficient. As this effect feeds through the system, wages tend to fall and the economy tends to shrink rather than grow. Because of the way a networked system “works,” this shrinkage tends to collapse the economy. The usage of  energy products of all kinds is likely to fall, more or less simultaneously.

In some ways current, economic models are the equivalent of flat maps, when we live in a spherical world. These models work pretty well for a while, but eventually, their predictions deviate further and further from reality. The reason our models of the future are wrong is because we are not imagining the system correctly. Continue reading