Ten Reasons Intermittent Renewables (Wind and Solar PV) are a Problem

Intermittent renewables–wind and solar photovoltaic panels–have been hailed as an answer to all our energy problems. Certainly, politicians need something to provide hope, especially in countries that are obviously losing their supply of oil, such as the United Kingdom. Unfortunately, the more I look into the situation, the less intermittent renewables have to offer. (Please note that I am not talking about solar hot water heaters. I am talking about intermittent renewables added to the electric grid.)

1. It is doubtful that intermittent renewables actually reduce carbon dioxide emissions.

It is devilishly difficult to figure out whether on not any particular energy source has a favorable impact on carbon dioxide emissions. The obvious first way of looking at emissions is to look at the fuel burned on a day-to-day basis. Intermittent renewables don’t seem to burn fossil fuel on day-to-day basis, while those using fossil fuels do, so wind and solar PV seem to be the winners.

The catch is that there are many direct and indirect ways that fossil fuels come into play in making the devices that create the renewable energy and in their operation on the grid. The researcher must choose “boundaries” for any analysis. In a sense, we need our whole fossil fuel powered system of schools, roads, airports, hospitals, and electricity transmission lines to make any of type of energy product work, whether oil, natural gas, wind, or solar electric–but it is difficult to make boundaries wide enough to cover everything.

The exercise becomes one of trying to guess how much carbon emissions are saved by looking at tops of icebergs, given that the whole rest of the system is needed to support the new additions. The thing that makes the problem more difficult is the fact that intermittent renewables have more energy-related costs that are not easy to measure than fossil fuel powered energy does. For example, there may be land rental costs, salaries of consultants, and (higher) financing costs because of the front-ended nature of the investment. There are also costs for mitigating intermittency and extra long-distance grid connections.

Many intermittent renewables costs seem to be left out of CO2 analyses under the theory that, say, land rental doesn’t really use energy. But the payment for land rental means that the owner can now go and buy more “stuff,” so it acts to raise fossil fuel energy consumption. Continue reading

Climate Change: The Standard Fixes Don’t Work

World leaders seem to have their minds made up regarding what will fix world CO2 emissions problems. Their list includes taxes on gasoline consumption, more general carbon taxes, cap and trade programs, increased efficiency in automobiles, greater focus on renewables, and more natural gas usage.

Unfortunately, we live in a world economy with constrained oil supply. Because of this, the chosen approaches have a tendency to backfire if some countries adopt them, and others do not. But even if everyone adopts them, it is not at all clear that they will provide the promised benefits.

Figure 1. Actual world carbon dioxide emissions from fossil fuels, as shown in BP’s 2012 Statistical Review of World Energy. Fitted line is expected trend in emissions, based on actual trend in emissions from 1987-1997, equal to about 1.0% per year.

The Kyoto Protocol was adopted in 1997. If emissions had risen at the average rate that they did during the 1987 to 1997 period (about 1% per year), emissions in 2011 would be 18% lower than they actually were. While there were many other things going on at the same time, the much higher rise in emissions in recent years is not an encouraging sign.

The standard fixes don’t work for several reasons:

1. In an oil-supply constrained world, if a few countries reduce their oil consumption, the big impact is to leave more oil for the countries that don’t. Oil price may drop a tiny amount, but on a world-wide basis, pretty much the same amount of oil will be extracted, and nearly all of it will be consumed.

2. Unless there is a high tax on imported products made with fossil fuels, the big impact of a carbon tax is to send manufacturing to countries without a carbon tax, such as China and India. These countries are likely to use a far higher proportion of coal in their manufacturing than OECD countries would, and this change will tend to increase world CO2 emissions. Such a change will also tend to raise the standard of living of citizens in the countries adding manufacturing, further raising emissions. This change will also tend to reduce the number of jobs available in OECD countries.

3. The only time when increasing natural gas usage will actually reduce carbon dioxide emissions is if it replaces coal consumption. Otherwise it adds to carbon emissions, but at a lower rate than other fossil fuels, relative to the energy provided.

4. Substitutes for oil, including renewable fuels, are ways of increasing consumption of coal and natural gas over what they would be in the absence of renewable fuels, because they act as  add-ons to world oil supply, rather than as true substitutes for oil. Even in cases where they are theoretically more efficient, they still tend to raise carbon emissions in absolute terms, by raising the production of coal and natural gas needed to produce them.

5. Even using more biomass as fuel does not appear to be a solution. Recent work by noted scientists suggests that ramping up the use of biomass runs the risk of pushing the world past a climate change tipping point.

It is really unfortunate that the standard fixes work the way they do, because many of the proposed fixes do have good points. For example, if oil supply is limited, available oil can be shared far more equitably if people drive small fuel-efficient vehicles. The balance sheet of an oil importing nation looks better if citizens of that nation conserve oil. But we are kidding ourselves if we think these fixes will actually do much to solve the world’s CO2 emissions problem.

If we really want to reduce world CO2 emissions, we need to look at reducing world population, reducing world trade, and making more “essential” goods and services locally.  It is doubtful that many countries will volunteer to use these approaches, however.  It seems likely that Nature will ultimately provide its own solution, perhaps working through high oil prices and weaknesses in the world financial system.

Continue reading

The Close Tie Between Energy Consumption, Employment, and Recession

The number of jobs available to job-seekers has been a problem for quite a long tine now—since 2000 in the United States, and longer than that in Europe. If we look at the percentage of the US population who are employed, it is now back to 1984 or 1985 levels.

Figure 1. Total number of individuals employed in non-farm labor, and reported by the US Bureau of Labor Statistics, divided by US resident population, as reported by the US Census Bureau.

I have run into a number of clues about what is happening. In this post, I’d like to discuss what I am seeing. Part of the problem is that high oil costs squeeze the economy, reducing employment. Part of the problem is growing trade with Asia. It is even possible that the Kyoto protocol (which the US did not sign) has something to do with what we are seeing. Let me start by explaining a fairly strange relationship. Continue reading

World Energy Consumption Since 1820 in Charts

Figure 1 shows the huge increase in world energy consumption that has taken place in roughly the last 200 years. This rise in energy consumption is primarily from increased fossil fuel use.

Figure 1. World Energy Consumption by Source, Based on Vaclav Smil estimates from Energy Transitions: History, Requirements and Prospects together with BP Statistical Data for 1965 and subsequent

With energy consumption rising as rapidly as shown in Figure 1, it is hard to see what is happening when viewed at the level of the individual. To get a different view, Figure 2 shows average consumption per person, using world population estimates by Angus Maddison.

Figure 2. Per capita world energy consumption, calculated by dividing world energy consumption shown in Figure 1 by population estimates, based on Angus Maddison data.

On a per capita basis, there is a huge spurt of growth between World War II and 1970. There is also a small spurt about the time of World War I, and a new spurt in growth recently, as a result of growing coal usage in Asia.

In this post, I provide additional charts showing long-term changes in energy supply, together with some observations regarding implications. One such implication is how  economists can be misled by past patterns, if they do not realize that past patterns reflect very different energy growth patterns than we will likely see in the future.

Continue reading