Why a Great Reset Based on Green Energy Isn’t Possible

It seems like a reset of an economy should work like a reset of your computer: Turn it off and turn it back on again; most problems should be fixed. However, it doesn’t really work that way. Let’s look at a few of the misunderstandings that lead people to believe that the world economy can move to a Green Energy future.

[1] The economy isn’t really like a computer that can be switched on and off; it is more comparable to a human body that is dead, once it is switched off.

A computer is something that is made by humans. There is a beginning and an end to the process of making it. The computer works because energy in the form of electrical current flows through it. We can turn the electricity off and back on again. Somehow, almost like magic, software issues are resolved, and the system works better after the reset than before.

Even though the economy looks like something made by humans, it really is extremely different. In physics terms, it is a “dissipative structure.” It is able to “grow” only because of energy consumption, such as oil to power trucks and electricity to power machines. Continue reading

The Approaching US Energy-Economic Crisis

I was recently asked to give a talk called, “The Approaching US Energy-Economic Crisis.” In other words, how might the United States encounter problems that lead to a crisis? As we will see, many of the problems that could lead to a crisis (such as increased wage disparity and difficulty in collecting enough taxes) are issues that we are already beginning to encounter.

In this talk, I first discuss the connection between energy and the economy. Without this connection, it doesn’t make sense to talk about a crisis arising with respect to energy and the economy. I then discuss seven issues that could lead to a US energy-economic crisis.

Continue reading

We are at Peak Oil now; we need very low-cost energy to fix it

This past week, I gave a presentation to a group interested in a particular type of renewable energy–solar energy that is deployed in space, so it would provide electricity 24 hours per day. Their question was: how low does the production cost of electricity really need to be?

I gave them this two-fold answer:

1. We are hitting something similar to “Peak Oil” right now. The symptoms are the opposite of the ones that most people expected. There is a glut of supply, and prices are far below the cost of production. Many commodities besides oil are affected; these include natural gas, coal, iron ore, many metals, and many types of food. Our concern should be that low prices will bring down production, quite possibly for many commodities simultaneously. Perhaps the problem should be called “Limits to Growth,” rather than “Peak Oil,” because it is a different type of problem than most people expected.

2. The only theoretical solution would be to create a huge supply of renewable energy that would work in today’s devices. It would need to be cheap to produce and be available in the immediate future. Electricity would need to be produced for no more than four cents per kWh, and liquid fuels would need to be produced for less than $20 per barrel of oil equivalent. The low cost would need to be the result of very sparing use of resources, rather than the result of government subsidies.

Of course, we have many other problems associated with a finite world, including rising population, water limits, and climate change. For this reason, even a huge supply of very cheap renewable energy would not be a permanent solution. Continue reading

Ten Reasons Intermittent Renewables (Wind and Solar PV) are a Problem

Intermittent renewables–wind and solar photovoltaic panels–have been hailed as an answer to all our energy problems. Certainly, politicians need something to provide hope, especially in countries that are obviously losing their supply of oil, such as the United Kingdom. Unfortunately, the more I look into the situation, the less intermittent renewables have to offer. (Please note that I am not talking about solar hot water heaters. I am talking about intermittent renewables added to the electric grid.)

1. It is doubtful that intermittent renewables actually reduce carbon dioxide emissions.

It is devilishly difficult to figure out whether on not any particular energy source has a favorable impact on carbon dioxide emissions. The obvious first way of looking at emissions is to look at the fuel burned on a day-to-day basis. Intermittent renewables don’t seem to burn fossil fuel on day-to-day basis, while those using fossil fuels do, so wind and solar PV seem to be the winners.

The catch is that there are many direct and indirect ways that fossil fuels come into play in making the devices that create the renewable energy and in their operation on the grid. The researcher must choose “boundaries” for any analysis. In a sense, we need our whole fossil fuel powered system of schools, roads, airports, hospitals, and electricity transmission lines to make any of type of energy product work, whether oil, natural gas, wind, or solar electric–but it is difficult to make boundaries wide enough to cover everything.

The exercise becomes one of trying to guess how much carbon emissions are saved by looking at tops of icebergs, given that the whole rest of the system is needed to support the new additions. The thing that makes the problem more difficult is the fact that intermittent renewables have more energy-related costs that are not easy to measure than fossil fuel powered energy does. For example, there may be land rental costs, salaries of consultants, and (higher) financing costs because of the front-ended nature of the investment. There are also costs for mitigating intermittency and extra long-distance grid connections.

Many intermittent renewables costs seem to be left out of CO2 analyses under the theory that, say, land rental doesn’t really use energy. But the payment for land rental means that the owner can now go and buy more “stuff,” so it acts to raise fossil fuel energy consumption. Continue reading