The World’s Fragile Economic Condition – Part 2

The world economy can appear to be operating quite well but can be hiding a major problem that causes it to be fragile. My presentation The World’s Fragile Economic Condition (PDF) explains why we should expect financial problems if energy consumption stops growing sufficiently rapidly. In fact, a global sell off in the equity markets, such as we have started to see recently, is one of the kinds of energy-related impacts we would expect.

This is Part 2 of a two-part write up of the presentation. In Part 1 (The World’s Fragile Economic Condition – Part 1), I explained that a large portion of the story that we usually hear about how the world economy operates and the role energy plays is not really correct. I explained that the world economy is a self-organized system that depends upon energy growth to support its own growth. In fact, there seems to be a dose-response. The faster energy consumption grows, the faster the world economy seems to grow. The period with fastest growth occurred between 1940 and 1980. During this period, interest rates were rising and workers saw their wages increase as fast as, or faster than, inflation. After 1980, the rate of growth in energy consumption fell, and the world needed to tackle its growth problems with a different approach, namely growing debt.

In this post, I explain how debt (and its partner, the sale of shares of stock) help pull the economy forward. With these types of financing, investment in new production becomes almost effortless as long as the return on investment stays high enough to repay debt with interest and to repay shareholders adequately. At some point, however, diminishing returns sets in because the most productive investments are made first.

The way diminishing returns plays out in energy extraction is by raising the cost of producing energy products. In order for the sales prices of energy products to rise to match the rising cost of production, rising demand is needed to give an upward “tug” on sales prices. This rising demand is normally produced by adding increasing amounts of debt at ever-lower interest rates. At some point, the debt bubble created in this manner becomes overstretched. We seem to be reaching that point now, especially in vulnerable parts of the world economy.

Slide 34

Continue reading

How the Economy Works as It Reaches Energy Limits — An Introduction for Actuaries and Others

Why have long-term interest rates generally fallen since 1981? Why have asset prices risen? Can these trends be expected to continue? The standard evaluation approach by actuaries and economists seems to be to look at past patterns and assume that they will be repeated.

The catch is that energy consumption growth plays a hugely important role in GDP growth. It also plays an important role in interest rates that businesses and governments can afford to pay. Energy consumption growth has been slowing; it is hard to see how growth in energy consumption can ramp back up materially in the future.

Slowing growth in energy consumption puts the world on track for a future like the 1930s, or even worse. It is hard to see how GDP growth, interest rates, and inflation rates can ramp up in the future. More likely, asset price bubbles will pop, leading to significant financial distress. Derivatives may be affected by rapid changes in prices and currency relativities, as asset bubbles pop.

The article that follows is a partial write-up of a long talk I gave to a group of life and annuity actuaries. (I am a casualty actuary myself, which is a slightly different specialty.) A PDF of my presentation can be found at this link: Reaching Limits of a Finite World

 

Slide 1

..

Slide 4

Continue reading

Energy limits: Is there anything we can do?

The energy limit we are running into is a cost limit. I would argue that neither the Republican or Democrat approach to solving the problem will really work.

The Republicans favor “Drill Baby Drill”. If the issue is that the price of oil extraction is too high, additional drilling doesn’t really fix the problem. At best, it gives us a little more expensive oil to add to the world’s supply. The Wall Street research firm Sanford Bernstein recently estimated that the non-Opec marginal cost of production rose to $104.50 a barrel in 2012, up more than 13 per cent from $92.30 a barrel in 2011.

US consumers still cannot afford to buy high-priced oil, even if we extract the oil ourselves. The countries that see rising oil consumption tend to be ones that can leverage its use better with cheaper fuels, particularly coal (Figure 1). See Why coal consumption keeps rising; what economists missed. The recent reduction in US oil usage is more related to young people not being able to afford to drive than it is to improved automobile efficiency. See my post, Why is gasoline mileage lower? Better gasoline mileage?

Figure 1. Oil consumption by part of the world, based on EIA data. 2012 world consumption data estimated based on world "all liquids" production amounts.

Figure 1. Oil consumption by part of the world, based on EIA data. 2012 world consumption data estimated based on world “all liquids” production amounts.

The Democrats favor subsidizing high-priced energy approaches that wouldn’t be competitive without such subsidies. Government debt is at 103% of GDP. It is hard to see that the government can afford such subsidies. Also, it is doubtful that the supposed carbon-saving benefit is really there, when all of the follow-on effects are included. Buying wind turbine parts, solar panels, and goods that use rare earth minerals (used in many high-tech goods, including electric cars and  wind turbines) helps to stimulate the Chinese economy, adding to their coal use. Furthermore, the higher taxes needed to pay for these subsidies reduces the spendable income of the common worker, pushing the country in the direction of recession.

So what do we do as an alternative, if neither the Republican or Democrat approach works? I would argue that we are dealing with a situation that is essentially unfixable. It can be expected to morph into a financial crash, for reasons I explained in How Resource Limits Lead to Financial Collapse. Thus, the issue we will need to mitigate will be debt defaults, loss of jobs, and possibly major changes to governments. If we are dealing with a financial crash, oil prices may in fact be lower, but people will still be unable to afford the oil because of other issues, such as lack of jobs or lack of access to money in their bank accounts. Continue reading

Reaching Limits in a Finite World

We don’t usually think about it, but we live in a finite world. In other words, in theory we can count precisely how many atoms make up the earth. We can also theoretically count how many humans live on earth and how many of any other species live on earth at a particular point in time.

At some point, in a finite world, we start reaching limits. There are now about seven billion people in the world. We could probably add some more, but how many? What is it that limits our ability to add more people to the world we live in today?

Too Much Population “Morphs” to an Energy and Financial Limit

One obvious guess as to what might limit world population is the amount of fresh water that is available. If we don’t have enough fresh water available, we can’t continue to expand population.

The amount of fresh water that is available can be changed, though, by adding desalination plants. There are many other ways of getting fresh water. To give an extreme example, the amount of fresh water available could be increased by melting ice in Antarctica and importing it by ship. Either of these solutions would require energy in an appropriate form—either to run the desalination plant, or to melt the ice and transport it by ship. Thus the fresh water shortage, at least for the foreseeable future, can be worked around if there is sufficient energy available of the right type.

The other not-so-minor detail is that the cost of desalination or of importing melted ice from Antarctica needs to be inexpensive enough that users of fresh water can afford it. In order for this to be the case, the cost of the appropriate type of energy must be extremely inexpensive. Continue reading