Scientific Models and Myths: What Is the Difference?

Most people seem to think, “The difference between models and myths is that models are scientific, and myths are the conjectures of primitive people who do not have access to scientific thinking and computers. With scientific models, we have moved far beyond myths.” It seems to me that the truth is quite different from this.

History shows a repeated pattern of overshoot and collapse. William Catton wrote about this issue in his highly acclaimed 1980 book, Overshoot.

Figure 1. Depiction of Overshoot and Collapse by Paul Chefurka

What politicians, economists, and academic book publishers would like us to believe is that the world is full of limitless possibilities. World population can continue to rise. World leaders are in charge. Our big problem, if we believe today’s models, is that humans are consuming fossil fuel at too high a rate. If we cannot quickly transition to a low carbon economy, perhaps based on wind, solar and hydroelectric, the climate will change uncontrollably. The problem will then be all our fault. The story, supposedly based on scientific models, has almost become a new religion.

Recent Attempted Shifts to Wind, Solar and Hydroelectric Are Working Poorly Continue reading

Rethinking Renewable Mandates

Powering the world’s economy with wind, water and solar, and perhaps a little wood sounds like a good idea until a person looks at the details. The economy can use small amounts of wind, water and solar, but adding these types of energy in large quantities is not necessarily beneficial to the system.

While a change to renewables may, in theory, help save world ecosystems, it will also tend to make the electric grid increasingly unstable. To prevent grid failure, electrical systems will need to pay substantial subsidies to fossil fuel and nuclear electricity providers that can offer backup generation when intermittent generation is not available. Modelers have tended to overlook these difficulties. As a result, the models they provide offer an unrealistically favorable view of the benefit (energy payback) of wind and solar.

If the approach of mandating wind, water, and solar were carried far enough, it might have the unfortunate effect of saving the world’s ecosystem by wiping out most of the people living within the ecosystem. It is almost certain that this was not the intended impact when legislators initially passed the mandates.

[1] History suggests that in the past, wind and water never provided a very large percentage of total energy supply.

Figure 1. Annual energy consumption per person (megajoules) in England and Wales 1561-70 to 1850-9 and in Italy 1861-70. Figure by Tony Wrigley, Cambridge University.

Figure 1 shows that before and during the Industrial Revolution, wind and water energy provided 1% to 3% of total energy consumption.

Continue reading

Why it (sort of) makes sense for the US to impose tariffs

Nearly everyone wonders, “Why is Donald Trump crazy enough to impose tariffs on imports from other countries? How could this possibly make sense?”

As long as the world economy is growing rapidly, it makes sense for countries to cooperate with each other. With the use of cooperation, scarce resources can become part of supply lines that allow the production of complex goods, such as computers, requiring materials from around the world. The downsides of cooperation include:

(a) The use of more oil to transport goods around the world;

(b) The more rapid exhaustion of resources of all kinds around the world; and

(c) Growing wage disparity as workers from high-wage countries compete more directly with workers from low-wages countries.

These issues can be tolerated as long as the world economy is growing fast enough. As the saying goes, “A rising tide lifts all boats.”

In this post, I will explain what is going wrong and how Donald Trump’s actions fit in with the situation we are facing. Strangely enough, there is a physics aspect to what is happening, even though it is likely that Donald Trump and the voters who elected him would probably not recognize this. In fact, the world economy seems to be on the cusp of a shrinking-back event, with or without the tariffs. Adding tariffs is an indirect way of allowing the US to obtain a better position in the new, shrunken economy, if this is really possible.

The upcoming shrinking-back event is the result of too little energy consumption in relation to total world population. Most researchers have completely missed the possibility that energy limits could manifest themselves as excessive wage disparity. In fact, they have tended to assume that energy limits would manifest themselves as high energy prices, especially for oil.

The world’s networked economy doesn’t work in the simple way that most researchers have assumed. Too much wage disparity tends to lead to low energy prices, rather than high, because of increasing affordability issues. The result is energy prices that are too low for producers, rather than too high for consumers. Producers (such as OPEC nations) willingly cut back on production in an attempt to get prices back up. The resulting shortage can be expected to more closely resemble financial collapse than high prices and a need for rationing. Trump’s tariffs may provide the US a better position, if the world economy should partially collapse.

Let me try to explain some pieces of this story. Continue reading

Electricity won’t save us from our oil problems

Almost everyone seems to believe that our energy problems are primarily oil-related. Electricity will save us.

I recently gave a talk to a group of IEEE electricity researchers (primarily engineers) about the current energy situation and how welcoming it is for new technologies. Needless to say, this group did not come with the standard mindset. They wanted to understand what the electricity situation really is. They are very aware that intermittent renewables, including wind and solar, present many challenges. They didn’t come with the preconceived notion that oil is the problem and electricity will save us.

It wasn’t until I sat down and looked at the electricity situation that I realized how worrying it really is. Intermittent wind and solar cannot stand on their own. They also cannot scale up to the necessary level in the required time period. Instead, the way they are added to the grid artificially depresses wholesale electricity prices, driving other forms of generation out of business. While intermittent wind and solar may sound sustainable, the way that they are added to the electric grid tends to push the overall electrical system toward collapse. They act like parasites on the system.

We end up with an electricity situation parallel to the chronic low-price problem we have for oil. Prices for producers, all along the electricity supply chain, fall too low. Of course, consumers don’t complain about this problem. The electricity system also becomes more fragile, as we depend to an ever greater extent on electricity supplies that may or may not be available at a reasonable price at a given point in time. The full extent of the problem doesn’t become apparent immediately, either. We end up with both the electrical and oil systems speeding in the direction of collapse, while most observers are saying, “But prices aren’t high. How can there possibly be a problem?”

Simply removing the subsidies that come from Production Tax Credits doesn’t fix the situation either. In one sense, the problem reflects a combination of many types of direct and indirect subsidies, including state mandates and the requirement that intermittent renewables be allowed to go first. In another sense, the problem is that, in a self-organizing economy, energy prices (including electricity prices) can only rise temporarily. The increase in energy prices is made possible by a growing debt bubble. At some point, this debt bubble collapses. Raising interest rates, as the US is doing now, is a good way of collapsing the debt bubble.

Furthermore, the subsidies for intermittent wind and solar discourage other innovation because they lead to terribly low wholesale prices for innovators to compete against, particularly in areas where hour by hour competitive rating is done. The ultimate problem is that if one type of electricity production is subsidized (even if in subtle ways), all electricity producers must be subsidized. Governments cannot possibly afford such widespread subsidies.

A PDF of my presentation can be found at this link: An Electricity Perspective on the Fragile State of the Economy. In this article, I offer some comments on these slides.

Continue reading

Intermittent Renewables Can’t Favorably Transform Grid Electricity

Many people are hoping for wind and solar PV to transform grid electricity in a favorable way. Is this really possible? Is it really feasible for intermittent renewables to generate a large share of grid electricity? The answer increasingly looks as if it is, “No, the costs are too great, and the return on investment would be way too low.” We are already encountering major grid problems, even with low penetrations of intermittent renewable electricity: US, 5.4% of 2015 electricity consumption; China, 3.9%; Germany, 19.5%; Australia, 6.6%.

In fact, I have come to the rather astounding conclusion that even if wind turbines and solar PV could be built at zero cost, it would not make sense to continue to add them to the electric grid in the absence of very much better and cheaper electricity storage than we have today. There are too many costs outside building the devices themselves. It is these secondary costs that are problematic. Also, the presence of intermittent electricity disrupts competitive prices, leading to electricity prices that are far too low for other electricity providers, including those providing electricity using nuclear or natural gas. The tiny contribution of wind and solar to grid electricity cannot make up for the loss of more traditional electricity sources due to low prices.

Leaders around the world have demanded that their countries switch to renewable energy, without ever taking a very close look at what the costs and benefits were likely to be. A few simple calculations were made, such as “Life Cycle Assessment” and “Energy Returned on Energy Invested.” These calculations miss the fact that the intermittent energy being returned is of very much lower quality than is needed to operate the electric grid. They also miss the point that timing and the cost of capital are very important, as is the impact on the pricing of other energy products. This is basically another example of a problem I wrote about earlier, Overly Simple Energy-Economy Models Give Misleading Answers.

Let’s look at some of the issues that we are encountering, as we attempt to add intermittent renewable energy to the electric grid.

Issue 1. Grid issues become a problem at low levels of intermittent electricity penetration. Continue reading