Why oil prices can’t rise very high, for very long

Oil prices are now as high as they have been for three years. At this writing, Brent is $74.14 per barrel and West Texas Intermediate is at $68.76. These prices aren’t really very high, if a person looks at the situation from a longer term point of view than the last three years.

Figure 1. EIA chart of weekly average Brent oil prices, through April 13, 2018.

There is always a question of how high oil prices can go, and for how long.

In fact, we have many resources, of many kinds, whose prices of extraction keep rising higher. For example, obtaining fresh water for the world’s population keeps getting more and more expensive. Some parts of the world need to resort to desalination.

The world economy cannot withstand high prices for any of these resources for very long. Certainly, it cannot withstand high prices for a combination of necessary resources, because people need to cut back on other purchases, in order to afford the necessities whose prices are rising. This article is a guest post by another actuary, who goes by the pseudonym Shunyata. He explains in a different way why high resource prices cannot last, whether they are for oil, or natural gas, water, or even fresh air.

Continue reading

What has gone wrong with oil prices, debt, and GDP growth?

Our economy is a mystery to almost everyone, including economists. Let me explain the way I see the situation:

(1) The big thing that pulls the economy forward is the time-shifting nature of debt and debt-like instruments.

If we want any kind of specialization, we need some sort of long-term obligation that will make that specialization worthwhile. If one hunter-gatherer specializes in finding flints that will start fires, that hunter-gatherer needs some sort of guarantee that others, who are finding food, will share some of their food with him, so that the group, as a whole, can prosper. Others, who specialize in gathering firewood, or in childcare, also need some kind of guarantee that their efforts will be rewarded.

At first, these obligations were enforced by social norms such as, “If you don’t follow the rules of the group, we will throw you out.” Gradually, reciprocal obligations became more formalized, and included more time shifting, “If you will work for me, I will pay you at the end of the month.” Or, “If you will pay my transportation costs to a land of more opportunity, I will repay you with 10% of my wages for the first five years.” Or, “I will sell you this piece of land, if you will pay me x amount per month for y years.”

In some cases, the loan (or loan-like agreements) takes the form of stock ownership of an enterprise. In this case, the promise is for future dividends, and the possibility of growth in the value of the stock, in return for the use of funds. Even though we generally refer to one type of loan-like agreement as “equity ownership” and the other as “debt,” they have a great deal of similarity. Funds are being provided to the enterprise, with the expectation of greater return in the future.

As another example, governments make promises for future benefits, such as Social Security, healthcare, and payments to the unemployed. These payments are not guaranteed, so are not considered debt. Even without a guarantee, they act in many ways like debt. Citizens plan their lives around these payments, even though they may be reduced or eliminated.

Surprisingly, even “cash” is debt. It is similar to a bond that pays zero interest and has no redemption date; this type of bond can also be easily transferred from person to person. Since cash can be hidden under mattresses, it too can be used as a device for time-shifting.

(2) The big thing that goes wrong in this time-shifting approach to operating the economy is the loss of what I would call an “opportunity gradient.”

Continue reading

Why energy prices are ultimately headed lower; what the IMF missed

We have been hearing a great deal about IMF concerns recently, after the release of its October 2016 World Economic Outlook and its Annual Meeting October 7-9. The concerns mentioned include the following:

  • Too much growth in debt, with China particularly mentioned as a problem
  • World economic growth seems to have slowed on a long-term basis
  • Central bank intervention required to produce artificially low interest rates, to produce even this low growth
  • Global international trade is no longer growing rapidly
  • Economic stagnation could lead to protectionist calls

These issues are very much related to issues that I have been writing about:

  • It takes energy to make goods and services.
  • It takes an increasing amount of energy consumption to create a growing amount of goods and services–in other words, growing GDP.
  • This energy must be inexpensive, if it is to operate in the historical way: the economy produces good productivity growth; this productivity growth translates to wage growth; and debt levels can stay within reasonable bounds as growth occurs.
  • We can’t keep producing cheap energy because what “runs out” is cheap-to-extract energy. We extract this cheap-to-extract energy first, forcing us to move on to expensive-to-extract energy.
  • Eventually, we run into the problem of energy prices falling below the cost of production because of affordability issues. The wages of non-elite workers don’t keep up with the rising cost of extraction.
  • Governments can try to cover up the problem with more debt at ever-lower interest rates, but eventually this doesn’t work either.
  • Instead of producing higher commodity prices, the system tends to produce asset bubbles.
  • Eventually, the system must collapse due to growing inefficiencies of the system. The result is likely to look much like a “Minsky Moment,” with a collapse in asset prices.
  • The collapse in assets prices will lead to debt defaults, bank failures, and a lack of new loans. With fewer new loans, there will be a further decrease in demand. As a result, energy and other commodity prices can be expected to fall to new lows.

Let me explain a few of these issues.

The Need For Energy to Operate the Economy Continue reading

How our energy problem leads to a debt collapse problem

Usually, we don’t stop to think about how the whole economy works together. A major reason is that we have been lacking data to see long-term relationships. In this post, I show some longer-term time series relating to energy growth, GDP growth, and debt growth–going back to 1820 in some cases–that help us understand our situation better.

When examining these long-term time series, I come to the conclusion that what we are doing now is building debt to unsustainably high levels, thanks to today’s high cost of producing energy products. I doubt that this can be turned around. To do so would require immediate production of huge quantities of incredibly cheap energy products–that is oil at less than $20 per barrel in 2014$, and other energy products with comparably low cost structures.

Our goal would need to be to get back to the energy cost levels that we had prior to the run-up in costs in the 1970s. Growth in energy use would probably need to rise back to pre-1975 levels as well. Of course, such a low-price, high-growth scenario isn’t really sustainable in a finite world either. It would have adverse follow-on effects, too, including climate change.

In this post, I explain the reasoning that leads to this conclusion. Some back-up information is provided in the Appendix as well.

Insight 1. Economic growth tends to take place when a civilization can make goods and services more cheaply–that is, with less human labor, and often with smaller quantities of resources of other kinds as well.

When an economy learns how to make goods more cheaply, the group of people in that economy can make more goods and services in total because, on average, each worker can make more goods and services in his available work-time. We might say that members of that economy are becoming more productive. This additional productivity can be distributed among workers, supervisors, governments, and businesses, allowing what we think of as economic growth.

Insight 2. The way that increased productivity usually takes place is through leveraging of human labor with supplemental energy from other sources.

The reason why we would expect supplemental energy to be important is because the amount of energy an individual worker can provide is not very great without access to supplemental energy. Analysis shows that human mechanical power amounts to about 100 watts over a typical laboring day–about equal to the energy of a 100-watt light bulb.

Human energy can be leveraged with other energy in many other forms–the burning of wood (for example, for cooking); the use of animals such as dogs, oxen, and horses to supplement our human labor; the harnessing of water or wind energy; the burning of fossil fuels and the use of nuclear energy. The addition of increasingly large amounts of energy products tends to lead to greater productivity, and thus, greater economic growth.

As an example of one kind of leveraging, consider the use of oil for delivering goods in trucks. A business might still be able to deliver goods without this use of oil. In this case, the business might hire an employee to walk to the delivery location and carry the goods to be delivered in his hands.

A big change occurs when oil and other modern fuels become available. It is possible to manufacture trucks to deliver goods. (In fact, modern fuels are needed to make the metals used in building the truck.) Modern fuels also make it possible to build the roads on which the truck operates. Finally, oil products are used to operate the truck.

With the use of a truck, the worker can deliver goods more quickly, since he no longer has to walk to his delivery locations. Thus, the worker can deliver far more goods in a normal work-day. This is the way his productivity increases.

Insight 3. Growth in GDP has generally been less than 1.0% more than the growth in energy consumption. The only periods when this was not true were the periods 1975-1985 and 1985-1995. 

This is an exhibit I prepared using data from the sources listed.

Figure 2. World GDP growth compared to world energy consumption growth for selected time periods since 1820. World real GDP trends for 1975 to present are based on USDA real GDP data in 2010$ for 1975 and subsequent. (Estimated by author for 2015.) GDP estimates for prior to 1975 are based on Maddison project updates as of 2013. Growth in the use of energy products is based on a combination of data from Appendix A data from Vaclav Smil's Energy Transitions: History, Requirements and Prospects together with BP Statistical Review of World Energy 2015 for 1965 and subsequent.

Figure 1. World GDP growth compared to world energy consumption growth for selected time periods since 1820. World real GDP trends for 1975 to present are based on USDA real GDP data in 2010$ for 1975 and subsequent. (Estimated by author for 2015.) GDP estimates for prior to 1975 are based on Maddison project updates as of 2013. Growth in the use of energy products is based on a combination of data from Appendix A data from Vaclav Smil’s Energy Transitions: History, Requirements and Prospects together with BP Statistical Review of World Energy 2015 for 1965 and subsequent.

Continue reading

Why We Have an Oversupply of Almost Everything (Oil, labor, capital, etc.)

The Wall Street Journal recently ran an article called, Glut of Capital and Labor Challenge Policy Makers: Global oversupply extends beyond commodities, elevating deflation risk. To me, this is a very serious issue, quite likely signaling that we are reaching what has been called Limits to Growth, a situation modeled in 1972 in a book by that name.

What happens is that economic growth eventually runs into limits. Many people have assumed that these limits would be marked by high prices and excessive demand for goods. In my view, the issue is precisely the opposite one: Limits to growth are instead marked by low prices and inadequate demand. Common workers can no longer afford to buy the goods and services that the economy produces, because of inadequate wage growth. The price of all commodities drops, because of lower demand by workers. Furthermore, investors can no longer find investments that provide an adequate return on capital, because prices for finished goods are pulled down by the low demand of workers with inadequate wages.

Evidence Regarding the Connection Between Energy Consumption and GDP Growth

We can see the close connection between world energy consumption and world GDP using historical data.

Figure 1. World GDP in 2010$ compared (from USDA) compared to World Consumption of Energy (from BP Statistical Review of World Energy 2014).

Figure 1. World GDP in 2010$ compared (from USDA) compared to World Consumption of Energy (from BP Statistical Review of World Energy 2014).

This chart gives a clue regarding what is wrong with the economy. The slope of the line implies that adding one percentage point of growth in energy usage tends to add less and less GDP growth over time, as I have shown in Figure 2. This means that if we want to have, for example, a constant 4% growth in world GDP for the period 1969 to 2013, we would need to gradually increase the rate of growth in energy consumption from about 1.8% = (4.0% – 2.2%) growth in energy consumption in 1969 to 2.8% = (4.0% – 1.2%) growth in energy consumption in 2013. This need for more and more growth in energy use to produce the same amount of economic growth is taking place despite all of our efforts toward efficiency, and despite all of our efforts toward becoming more of a “service” economy, using less energy products!

Figure 2. Expected change in GDP growth corresponding to 1% growth in total energy, based on Figure 1 fitted line.

Figure 2. Expected change in GDP growth corresponding to 1% growth in total energy, based on Figure 1 fitted line.

To make matters worse, growth in world energy supply is generally trending downward as well. (This is not just oil supply whose growth is trending downward; this is oil plus everything else, including “renewables”.)

Figure 3. Three year average percent change in world energy consumption, based on BP Statistical Review of World Energy 2014 data.

Figure 3. Three-year average percent change in world energy consumption, based on BP Statistical Review of World Energy 2014 data.

There would be no problem, if economic growth were something that we could simply walk away from with no harmful consequences. Unfortunately, we live in a world where there are only two options–win or lose. We can win in our contest against other species (especially microbes), or we can lose. Winning looks like economic growth; losing looks like financial collapse with huge loss of human population, perhaps to epidemics, because we cannot maintain our current economic system.

The symptoms of losing the game are the symptoms we are seeing today–low commodity prices (temporarily higher, but nowhere nearly high enough to maintain production), not enough jobs that pay well for common workers, and a lack of investment opportunities, because workers cannot afford the high prices of goods that would be required to provide adequate return on investment.

Continue reading