COVID-19 and oil at $1: Is there a way forward?

Many people are concerned today with the low price of oil. Others are concerned about slowing or stopping COVID-19. Is there any way forward?

I gave a few hints regarding what is ahead in my last post, Economies won’t be able to recover after shutdowns. We live in a world with a self-organizing economy, made up of components such as businesses, customers, governments and interest rates. Our basic problem is a finite world problem. World population has outgrown its resource base.

Some sort of economy might work with the current resource base, but not the present economy. The COVID-19 crisis and the lockdowns used to try to contain the crisis push the economy farther along the route toward collapse. In this post, I suggest the possibility that some core parts of the world economy might temporarily be saved if they can be made to operate fairly independently of each other.

Let’s look at some parts of the problem:

[1] The world economy works like a pump. Continue reading

Supplemental energy puts humans in charge

Energy is a subject that is greatly misunderstood. Its role in our lives is truly amazing. We humans are able to live and move because of the energy that we get from food. We count this energy in calories.

Green plants are also energy dependent. In photosynthesis, plants use energy from the sun to convert carbon dioxide and water into the glucose that they need to grow.

Ecosystems are energy dependent as well. The ecologist Howard T. Odum in Environment, Power, and Society explains that ecosystems self-organize in a way that maximizes the useful energy obtained by the group of plants and animals.

Economies created by humans are in some respects very similar to ecosystems. They, too, self-organize and seem to be energy dependent. The big difference is that over one million years ago, pre-humans learned to control fire. As a result, they were able to burn biomass and indirectly add the energy this provided to the food energy that they otherwise had available. The energy from burning biomass was an early form of supplemental energy. How important was this change?

How Humans Gained Dominion Over Other Animals

James C. Scott, in Against the Grain, explains that being able to burn biomass was sufficient to turn around who was in charge: pre-humans or large animals. In one cave in South Africa, he indicates that a lower layer of remains found in the cave did not show any carbon deposits, and hence were created before pre-humans occupying the cave gained control of fire. In this layer, skeletons of big cats were found, along with scattered gnawed bones of pre-humans.

In a higher layer, carbon deposits were found. In this layer, pre-humans were clearly in charge. Their skeletons were much more intact, and the bones of big cats were scattered about and showed signs of gnawing. Who was in charge had changed.

There is other evidence of human domination becoming possible with the controlled use of fire. Studies show a dramatic drop in numbers of large mammals not long after settlement by humans in several areas outside Africa. (Jeremy Lent, The Patterning Instinct, based on P. S. Martin’s “Prehistoric overkill: A global model” in Quaternary Extinctions: A Prehistoric Revolution.) Continue reading

Charts showing the long-term GDP-energy tie (Part 2 – A New Theory of Energy and the Economy)

In Part 1 of this series, I talked about why cheap fuels act to create economic growth. In this post, we will look at some supporting data showing how this connection works. The data is over a very long time period–some of it going back to the Year 1 C. E.

We know that there is a close connection between energy use (and in fact oil use) and economic growth in recent years.

Figure 1. Comparison of three-year average growth in world real GDP (based on USDA values in 2005$), oil supply and energy supply. Oil and energy supply are from BP Statistical Review of World Energy, 2014.

Figure 1. Comparison of three-year average growth in world real GDP (based on USDA values in 2005$), oil supply and energy supply. Oil and energy supply are from BP Statistical Review of World Energy, 2014.

In this post, we will see how close the connection has been, going back to the Year 1 CE. We will also see that economies that can leverage their human energy with inexpensive supplemental energy gain an advantage over other economies. If this energy becomes high cost, we will see that countries lose their advantage over other countries, and their economic growth rate slows.

A brief summary of my view discussed in Part 1 regarding how inexpensive energy acts to create economic growth is as follows:

The economy is a networked system. With cheap fuels, it is possible to leverage the expensive energy that humans can create from eating foods (examples: ability to dig ditches, do math problems), so as to produce more goods and services with the same number of workers. Workers find that their wages go farther, allowing them to buy more goods, in addition to the ones that they otherwise would have purchased.

The growth in the economy comes from what I would call increasing affordability of goods. Economists would refer to this increasing affordability as increasing demand. The situation might also be considered increasing productivity of workers, because the normal abilities of workers are leveraged through the additional tools made possible by cheap energy products.

Thus, if we want to keep the economy functioning, we need an ever-rising supply of cheap energy products of the appropriate types for our built infrastructure. The problem we are encountering now is that this isn’t happening–more energy supply may be available, but it is expensive-to-produce supply. Our networked economy sends back strange signals–namely inadequate demand and low prices–when the cost of energy products is too high relative to wages. These low prices are also a signal that we are reaching other limits of a networked economy, such as too much debt and taxes that are too high for workers to pay.

Looking at very old data – Year 1 C. E. onward

Some very old data is available. The British Economist Angus Maddison made GDP and population estimates for a number of dates between 1 C. E. and 2008, for selected countries and the world in total. Canadian Energy Researcher Vaclav Smil gives historical energy consumption estimates back to 1800 in his book Energy Transitions – History, Requirements and Prospects.

If we look at the average annual increase in GDP going back to the Year 1 C. E., it appears that the annual growth rate in inflation-adjusted GDP peaked in the 1940 to 1970 period, and has been falling ever since. So the long-term downward trend in world GDP growth has lasted at least 44 years at this point.

Figure 2. Average annual increase in GDP per capita, based on work of Angus Maddison through 2000; USDA population/real GDP figures used for 2000 to 2014.

Figure 2. Average annual increase in inflation-adjusted GDP, based on work of Angus Maddison through 2000; USDA population/real GDP figures used for 2000 to 2014.

Continue reading

Converging Energy Crises – And How our Current Situation Differs from the Past

At the Age of Limits Conference, I gave a talk called Converging Crises (PDF), talking about the crises facing us as we reach energy limits. In this post, I discuss some highlights from a fairly long talk.

A related topic is how our current situation is different from past collapses. John Michael Greer talked about prior collapses, but because both of our talks were late in the conference and because I was leaving to catch a plane, we never had a chance to discuss how “this time is different.” To fill this gap, I have included some comments on this subject at the end of this post.

The Nature of our Current Crisis

Figure 1

Figure 1

The first three crises are the basic ones: population growth, resource depletion, and environmental degradation. The other crises are not as basic, but still may act to bring the system down. Continue reading

Eight Energy Myths Explained

Republicans, Democrats, and environmentalists all have favorite energy myths. Even Peak Oil believers have favorite energy myths. The following are a few common mis-beliefs,  coming from a variety of energy perspectives. I will start with a recent myth, and then discuss some longer-standing ones.

Myth 1. The fact that oil producers are talking about wanting to export crude oil means that the US has more than enough crude oil for its own needs.

The real story is that producers want to sell their crude oil at as high a price as possible. If they have a choice of refineries A, B, and C in this country to sell their crude oil to, the maximum amount they can receive for their oil is limited by the price these refineries are paying, less the cost of shipping the oil to these refineries.

If it suddenly becomes possible to sell crude oil to refineries elsewhere, the possibility arises that a higher price will be available in another country. Refineries are optimized for a particular type of crude. If, for example, refineries in Europe are short of light, sweet crude because such oil from Libya is mostly still unavailable, a European refinery might be willing to pay a higher price for crude oil from the Bakken (which also produces light sweet, crude) than a refinery in this country. Even with shipping costs, an oil producer might be able to make a bigger profit on its oil sold outside of the US than sold within the US.

The US consumed 18.9 million barrels a day of petroleum products during 2013. In order to meet its oil needs, the US imported 6.2 million barrels of oil a day in 2013 (netting exported oil products against imported crude oil). Thus, the US is, and will likely continue to be, a major oil crude oil importer.

If production and consumption remain at a constant level, adding crude oil exports would require adding crude oil imports as well. These crude oil imports might be of a different kind of oil than that that is exported–quite possibly sour, heavy crude instead of sweet, light crude. Or perhaps US refineries specializing in light, sweet crude will be forced to raise their purchase prices, to match world crude oil prices for that type of product.

The reason exports of crude oil make sense from an oil producer’s point of view is that they stand to make more money by exporting their crude to overseas refineries that will pay more. How this will work out in the end is unclear. If US refiners of light, sweet crude are forced to raise the prices they pay for oil, and the selling price of US oil products doesn’t rise to compensate, then more US refiners of light, sweet crude will go out of business, fixing a likely world oversupply of such refiners. Or perhaps prices of US finished products will rise, reflecting the fact that the US has to some extent in the past received a bargain (related to the gap between European Brent and US WTI oil prices), relative to world prices. In this case US consumers will end up paying more.

The one thing that is very clear is that the desire to ship crude oil abroad does not reflect too much total crude oil being produced in the United States. At most, what it means is an overabundance of refineries, worldwide, adapted to light, sweet crude. This happens because over the years, the world’s oil mix has been generally changing to heavier, sourer types of oil. Perhaps if there is more oil from shale formations, the mix will start to change back again. This is a very big “if,” however. The media tend to overplay the possibilities of such extraction as well.

Myth 2. The economy doesn’t really need very much energy.

Continue reading