The “Wind and Solar Will Save Us” Delusion

The “Wind and Solar Will Save Us” story is based on a long list of misunderstandings and apples to oranges comparisons. Somehow, people seem to believe that our economy of 7.5 billion people can get along with a very short list of energy supplies. This short list will not include fossil fuels. Some would exclude nuclear, as well. Without these energy types, we find ourselves with a short list of types of energy — what BP calls Hydroelectric, Geobiomass (geothermal, wood, wood waste, and other miscellaneous types; also liquid fuels from plants), Wind, and Solar.

Unfortunately, a transition to such a short list of fuels can’t really work. These are a few of the problems we encounter:

[1] Wind and solar are making extremely slow progress in helping the world move away from fossil fuel dependence.

In 2015, fossil fuels accounted for 86% of the world’s energy consumption, and nuclear added another 4%, based on data from BP Statistical Review of World Energy. Thus, the world’s “preferred fuels” made up only 10% of the total. Wind and solar together accounted for a little less than 2% of world energy consumption.

Figure 1. World energy consumption based on data from BP 2016 Statistical Review of World Energy.

Figure 1. World energy consumption based on data from BP 2016 Statistical Review of World Energy.

Our progress in getting away from fossil fuels has not been very fast, either. Going back to 1985, fossil fuels made up 89% of the total, and wind and solar were both insignificant. As indicated above, fossil fuels today comprise 86% of total energy consumption. Thus, in 30 years, we have managed to reduce fossil fuel consumption by 3% (=89% – 86%). Growth in wind and solar contributed 2% of this 3% reduction. At the rate of a 3% reduction every 30 years (or 1% reduction every ten years), it will take 860 years, or until the year 2877 to completely eliminate the use of fossil fuels. And the “improvement” made to date was made with huge subsidies for wind and solar.

Figure 2. World electricity generation by source, based on BP 2016 Statistical Review of World Energy.

Figure 2. World electricity generation by source based on BP 2016 Statistical Review of World Energy.

The situation is a little less bad when looking at the electricity portion alone (Figure 2). In this case, wind amounts to 3.5% of electricity generated in 2015, and solar amounts to 1.1%, making a total of 4.6%. Fossil fuels account for “only” 66% of the total, so this portion seems to be the place where changes can be made. But replacing all fossil fuels, or all fossil fuels plus nuclear, with preferred fuels seems impossible.

[2] Grid electricity is probably the least sustainable form of energy we have.

Continue reading

Renewables – Good for some things; not so good for others

Based on the sound of the name renewable, a person might think that using only “renewable” energy is ideal–something we should all strive to use exclusively. But there are lots of energy sources that might be called “renewable,” and lots applications for renewable energy. Clearly not all are equally good. Perhaps we should examine the “Renewables are our savior,” belief a little more closely.

Figure 1. World fuel consumption based on BP's 2012 Statistical Review of World Energy data.

Figure 1. World fuel consumption based on BP’s 2012 Statistical Review of World Energy data.

1. Renewables that we have today won’t replace the quantity of ¬†today’s fossil fuels, in any reasonable timeframe.

Figure 1, above shows the distribution of fuels used since 1965. 

Other renewables, which includes wind, solar, geothermal and other categories of new renewables, in total amounts to 1.6% of world energy supply in 2011, according to BP. The light blue line is not very visible on Figure 1. (The blue line that is visible at the top is “Nuclear.”)

Biofuels, which would include ethanol and other types of biofuels, such as palm oil, amounts to 0.5% of world energy supply. Its orange line is not very visible on the chart either.

Hydroelectric, shown in purple, has been around a long time–since 1880 in the United States. It amounts to 6.4% of world energy supply. Its quantity is not growing very much, because most of the good locations have already been dammed.

In total, the three categories amount to 8.5% of world energy supply. If growth continues at today’s rate, it will be a very long time before renewable energy supply can be expected to amount to more than 10% or 15% of world energy supply. We very clearly cannot operate all the equipment we have today on this quantity of energy. In fact, it is doubtful that we can even cover the basics (food, water, and heat to keep from freezing) for 7 billion people, with this quantity of energy. Continue reading

The Long-Term Tie Between Energy Supply, Population, and the Economy

The tie between energy supply, population, and the economy goes back to the hunter-gatherer period. Hunter-gatherers managed to multiply their population at least 4-fold, and perhaps by as much as 25-fold, by using energy techniques which allowed them to expand their territory from central Africa to virtually the whole world, including the Americas and Australia.

The agricultural revolution starting about 7,000 or 8,000 BCE was next big change, multiplying population more than 50-fold. The big breakthrough here was the domestication of grains, which allowed food to be stored for winter, and transported more easily.

The next major breakthrough was the industrial revolution using coal. Even before this, there were major energy advances, particularly using peat in Netherlands and early use of coal in England. These advances allowed the world’s population to grow more than four-fold between the year 1 CE and 1820 CE. Between 1820 and the present, population has grown approximately seven-fold.

Table 1. Population growth rate prior to the year 1 C. E. based on McEvedy & Jones, “Atlas of World Population History”, 1978; later population as well as GDP based on Angus Madison estimates; energy growth estimates are based on estimates by Vaclav Smil in Energy Transitions: HIstory Requirements, and Prospects, adjusted by recent information from BP’s 2012 Statistical Review of World Energy.

When we look at the situation on a year-by-year basis (Table 1), we see that on a yearly average basis, growth has been by far the greatest since 1820, which is the time since the widespread use of fossil fuels. We also see that economic growth seems to proceed only slightly faster than population growth up until 1820. After 1820, there is a much wider “gap” between energy growth and GDP growth, suggesting that the widespread use of fossil fuels has allowed a rising standard of living.

The rise in population growth and GDP growth is significantly higher in the period since World War II than it was in the period prior to that time. This is the period during which growth in which oil consumption had a significant impact on the economy. Oil greatly improved transportation and also enabled much greater agricultural output. An indirect result was more world trade, which enabled production of goods needing inputs around the world, such as computers.

When a person looks back over history, the impression one gets is that the economy is a system that transforms resources, especially energy, into food and other goods that people need. As these goods become available, population grows. The more energy is consumed, the more the economy grows, and the faster world population grows. When little energy is added, economic growth proceeds slowly, and population growth is low.

Economists seem to be of the view that GDP growth gives rise to growth in energy products, and not the other way around. This is a rather strange view, in light of the long tie between energy and the economy, and in light of the apparent causal relationship. With a sufficiently narrow, short-term view, perhaps the view of economists can be supported, but over the longer run it is hard to see how this view can be maintained. Continue reading

The Growing Part of the World in Charts

Some parts of the world pretty much sailed through the 2008-2009 recession, while other parts of the world had huge problems. The part that sailed through the recession is what I call the “Growing Part of the World.”

I thought it would be interesting to see how the countries in the “Growing Part of the World” have behaved over the long term with respect to a number of variables (energy, GDP, and population). I compare these countries to two other groups of countries which did not fare as well during the 2008-2009 recession:

  1. European Union 27, United States and Japan
  2. Former Soviet Union (FSU)

Together these three groups equal the whole world, which is why I call the Growing Part of the World “Remainder” on my charts.

Figure 1 (below) shows that GDP growth rates have been quite different over the long term for the three groups, with the growth rate of the Growing Group higher than that of EU, US and Japan. The FSU’s growth rate has been more variable. Thus, it is not just during the 2008-2009 recession that the groups were different.

Figure 1 – Annual per cent increase in real GDP by area, based on USDA Economic Research Service data. “Remainder” corresponds to the Growing Part of the World.

The charts I have prepared show huge differences in variables besides GDP growth: in population levels, growth rate of population, and types of energy used, for example. The amount of energy for each unit of GDP varies widely, as does the pattern over time. While the FSU and the “EU, US & Japan” grouping show lower energy consumption for each unite of GDP over time, the Growing Group in total does not.

At the end of this post, I explain the reasons that why the Growing Part of the World seems to be doing so much better than the world economically and offer my view of what its prospects are for the future.

Continue reading